Activity-dependent degeneration of axotomized neuromuscular synapses in WldS mice
نویسندگان
چکیده
Activity and disuse of synapses are thought to influence progression of several neurodegenerative diseases in which synaptic degeneration is an early sign. Here we tested whether stimulation or disuse renders neuromuscular synapses more or less vulnerable to degeneration, using axotomy as a robust trigger. We took advantage of the slow synaptic degeneration phenotype of axotomized neuromuscular junctions in flexor digitorum brevis (FDB) and deep lumbrical (DL) muscles of Wallerian degeneration-Slow (Wld(S)) mutant mice. First, we maintained ex vivo FDB and DL nerve-muscle explants at 32°C for up to 48 h. About 90% of fibers from Wld(S) mice remained innervated, compared with about 36% in wild-type muscles at the 24-h checkpoint. Periodic high-frequency nerve stimulation (100 Hz: 1s/100s) reduced synaptic protection in Wld(S) preparations by about 50%. This effect was abolished in reduced Ca(2+) solutions. Next, we assayed FDB and DL innervation after 7 days of complete tetrodotoxin (TTX)-block of sciatic nerve conduction in vivo, followed by tibial nerve axotomy. Five days later, only about 9% of motor endplates remained innervated in the paralyzed muscles, compared with about 50% in 5 day-axotomized muscles from saline-control-treated Wld(S) mice with no conditioning nerve block. Finally, we gave mice access to running wheels for up to 4 weeks prior to axotomy. Surprisingly, exercising Wld(S) mice ad libitum for 4 weeks increased about twofold the amount of subsequent axotomy-induced synaptic degeneration. Together, the data suggest that vulnerability of mature neuromuscular synapses to axotomy, a potent neurodegenerative trigger, may be enhanced bimodally, either by disuse or by hyperactivity.
منابع مشابه
Sarm1 Deletion, but Not WldS, Confers Lifelong Rescue in a Mouse Model of Severe Axonopathy
Studies with the WldS mutant mouse have shown that axon and synapse pathology in several models of neurodegenerative diseases are mechanistically related to injury-induced axon degeneration (Wallerian degeneration). Crucially, an absence of SARM1 delays Wallerian degeneration as robustly as WldS, but their relative capacities to confer long-term protection against related, non-injury axonopathy...
متن کاملActivity-dependent Degeneration of Axotomized Neuromuscular Synapses in Wld Mice
Activity and disuse of synapses are thought to influence progression of several neurodegenerative diseases in which synaptic degeneration is an early sign. Here we tested whether stimulation or disuse renders neuromuscular synapses more or less vulnerable to degeneration, using axotomy as a robust trigger. We took advantage of the slow synaptic degeneration phenotype of axotomized neuromuscular...
متن کاملUltrastructural correlates of synapse withdrawal at axotomized neuromuscular junctions in mutant and transgenic mice expressing the Wld gene.
We carried out an ultrastructural analysis of axotomized synaptic terminals in Wld(s) and Ube4b/Nmnat (Wld) transgenic mice, in which severed distal axons are protected from Wallerian degeneration. Previous studies have suggested that axotomy in juvenile (< 2 months) Wld mice induced a progressive nerve terminal withdrawal from motor endplates. In this study we confirm that axotomy-induced term...
متن کاملThe relationship of neuromuscular synapse elimination to synaptic degeneration and pathology: insights from WldS and other mutant mice.
Neuromuscular synapse elimination, Wallerian degeneration and peripheral neuropathies are not normally considered as related phenomena. However, recent studies of mutant and transgenic mice, particularly the Wld(S) mutant-in which orthograde degeneration is delayed following axotomy-suggest that re-evaluation of possible links between natural, traumatic and pathogenic regression of synapses may...
متن کاملPersistence of neuromuscular junctions after axotomy in mice with slow Wallerian degeneration (C57BL/WldS).
The present study was undertaken to examine the fate of neuromuscular junctions in C57BL/WldS mice (formerly known as OLA mice) after nerve injury. When a peripheral nerve is injured, the distal axons normally degenerate within 1-3 days. For motor axons, an early event is deterioration of motor nerve terminals at neuromuscular junctions. Previously, the vulnerability of motor terminals has been...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 290 شماره
صفحات -
تاریخ انتشار 2015